While N^{10} -CHOFAH₄ has been shown to occur in these reactions, it is conceivable that it is interconvertible with a more labile derivative. N^{10} -CHOFA is converted to N^{10} -CHOFAH₄ by a reducing system. In Table II 14 C-formyl-labeled N^{10} -CHOFA is shown to transformylate to glycine to form serine. A system forming reduced pyridine nucleotide is required. Transformylation for synthesis of histidine and purine derivatives also is shown.

These experiments have been repeated with labeled N¹¹¹-CHOFAH₄ and gave essentially similar results, but addition of DPNH was still necessary for serine synthesis. Beginning either with serine and FAH₄ or with N¹¹-CHOFAH₄ and DPNH a hydroxymethylfolic acid compound was formed * . The conversion to the hydroxymethyl level by reaction with reduced pyridine nucleotide can be coupled in this system with reduction of DPN to DPNH by a tetrahydrofolate compound. Thus in the presence of substrate amounts of formate, glycine, ATP and DPNH, serine synthesis occurred with catalytic quantities of FAH₄ (0.01 moles/mole serine). However when substrate amounts of FAH₄ were used, only catalytic concentrations of DPNH (0.05 moles/mole serine) were required. While it is clear that a stable cofactor acts in one-carbon transfer reactions³, 7, 10-12, these studies provide evidence that N¹¹-CHOFAH₄ can function as a general transformylating agent, that its formyl group is in equilibrium by an oxidation-reduction system with the β -carbon of serine through a hydroxymethyl level derivative and that CF is not directly involved in this interconversion.

Chemisches Institut der Universität, Marburg (Germany)

LOTHAR JAENICKE**

- ¹ M. GORDON, J. M. RAVEL, R. E. EAKIN AND W. SHIVE, J. Am. Chem. Soc., 70 (1948) 878.
- ² H. M. RAUEN AND L. JAENICKE, Z. physiol. Chem., 293 (1953) 46.
- ³ G. R. Greenberg, J. Am. Chem. Soc., 76 (1954) 1458; Federation Proc., 13 (1954) 745.
- ⁴ G. R. Greenberg, L. Jaenicke and M. Silverman, Biochim. Biophys. Acta, 17 (1955) 589.
- ⁵ A. Wacker, H. Grisebach, A. Trabert and F. Weygand, Angew. Chem., 66 (1954) 326.
- ⁶ C. A. Nichol, A. H. Anton and S. F. Zakrzewski, Science, 121 (1955) 275.
- ⁷ B. E. Wright, Biochim. Biophys. Acta, 16 (1955) 165.
- ⁸ B. L. O'Dell, J. M. Vandenbelt, E. S. Bloom and J. J. Pfiffner, J. Am. Chem. Soc., 69 (1947) 250.
- ⁹ M. May, T. J. Bardos, F. L. Barger, M. Lansford, J. M. Ravel, G. L. Sutherland and W. Shive, J. Am. Chem. Soc., 73 (1951) 3067.
- ¹⁰ P. Berg, J. Biol. Chem., 205 (1953) 145.
- ¹¹ R. L. Blakley, Nature, 173 (1954) 729; Biochem. J., 58 (1954) 4481.
- ¹² R. L. KISLIUK AND W. SAKAMI, J. Am. Chem. Soc., 76 (1954) 1456.

Received May 13th, 1955

*On isolation this compound was found to be oxidized to N¹⁰-hydroxymethylfolic acid which was identified by comparison with the authentic compound synthesized by two different methods.

** National Research Council Fellow. Present address: Department of Biochemistry, School of Medicine, Western Reserve University, Cleveland, Ohio.

On the occurrence of N¹⁰-formyltetrahydrofolic acid by enzymic formylation of tetrahydrofolic acid and on the mechanism of this reaction

Pigeon^{1,2} and pig³ liver extracts catalyze an ATP*-dependent reaction between tetrahydrofolic acid and formate to yield a product which transformylates directly to 5-amino-4-imidazolecarbox-amide-5'-phosphoriboside^{1,4} to form inosine-5'-phosphate in the absence of ATP. During purification this compound was converted to a compound having the properties of N¹⁰-formyldihydrofolic acid² and then to N¹⁰-formylfolic acid^{1,2,3,5,6,7}. This communication provides evidence that the overall reaction, catalyzed by an enzyme system which we propose to call tetrahydrofolate formylase, may be formulated as follows:

$$\mathsf{HCOOH} + \mathsf{FAH_4} + \mathsf{ATP} {\longrightarrow} \mathsf{CHOFAH_4} + \mathsf{ADP} + \mathsf{H_3PO_4}$$

The evidence that $CHOFAH_4$ is N^{10} - $CHOFAH_4$ or a closely related compound is: 1. synthetic N^{10} - $CHOFAH_4$, transformylates to imidazolecarboxamide ribotide in the absence of ATP, 2. $CHOFAH_4$ can be converted quantitatively to the N^5 - N^{10} -imidazolinium derivative of formyltetrahydrofolic

^{*}Abbreviations: FAH₄, tetrahydrofolic acid; CHOFAH₄, formyltetrahydrofolic acid; N¹⁰-CHOFAH₄, N¹⁰-formyltetrahydrofolic acid; N¹⁰-CHOFAH₂, N¹⁰-formyldihydrofolic acid; N¹⁰-CHOFA, N¹⁰-formylfolic acid; CF, citrovorum factor; ATP, adenosinetriphosphate; ACF, the N⁵-N¹⁰-imidazolinium derivative of formyltetrahydrofolic acid (anhydrocitrovorum factor, anhydroleucovorin); EDTA, ethylenediaminetetraacetate.

acid, 3. CHOFAH $_4$ is oxidized to a compound having the properties of N 10 -CHOFAH $_2$, and 4. CHOFAH $_4$ is converted chemically to CF. In addition it is shown that CF (N 5 -formyltetrahydrofolic acid) is not the first product of the formylase reaction but appears to be derived from N 10 -CHOFAH $_4$. Table 1 presents a balance for the overall tetrahydrofolate formylase reaction.

TABLE I

formation of $\mathrm{N}^{10} ext{-}\mathrm{CHOFAH_4}$ and orthophosphate by the formylase reaction

Conditions: 0.05 ml enzyme, 0.05 μ moles Na₄ ATP, 0.7 μ moles Na-PGA, 0.8 μ moles Na-formate-¹⁴C, 16,000 counts/ μ mole, 3 μ moles MgCl₂, 0.4 mg EDTA, 1.25 μ moles FAH₄, 10 μ moles KHCO₃. Total volume 0.5 ml. The reaction was carried out under petroleum ether. Incubation 15 minutes, 37°. The reaction was stopped with 1.2 ml 0.66% HClO₄ and was kept under petroleum ether 30 min before measurement of ACF.

Additions	¹⁴ C formate Incorporated µmoles	N ¹⁰ -CHOFAH ₄ * Formed μmoles	Orthophosphate** Total µmoles	(a-b) µmoles
(a) Complete	0.20	0.21	0.46	0.21
$(b) - FAH_4$	O	o	0.25	
(c) $-\Lambda TP$	0.01	0.07	0.16	
(d) Complete (zero time)	O	0.05	0.18	

^{*} Determined as ACF (after anaerobic acidification^{8,9}) by the difference in optical density at 360 m μ between aliquots taken at zero time and after incubation and based on a change in the molecular extinction value of 22,000 between FAH₄ and ACF.

** By the method of Gomori¹⁰ after removal of interfering folic acid compounds with Dowex-50 (H+ form).

**** Pigeon liver was homogenized with 5 volumes of 0.25 M sucrose containing 0.1% EDTA and centrifuged at 80,000 \times g for 30 min. The extract was frozen overnight, allowed to stand 2 h at room temperature and any precipitate removed. The fraction precipitating between 0.25 to 0.60 of saturation with ammonium sulfate (pH 7.0) was dialyzed against 0.01 M KHCO₃ overnight at 4°. The enzyme system is stable to freezing and thawing.

TABLE II

CHEMICAL CONVERSION OF THE PRODUCT OF THE TETRAHYDROFOLATE FORMYLASE REACTION TO CITROVORUM FACTOR

Conditions: 1.0 ml pigeon liver extract (homogenized liver with 3 parts of 0.25 M sucrose, remove particulate fractions in Spinco centrifuge, pass through a Dowex-1-Cl column and dialyze overnight against 0.05 M KHCO₃), 6 \$\mu\$moles FAH₄, 9 \$\mu\$moles MgCl₂, 50 \$\mu\$moles KHCO₃, 2.5 \$\mu\$moles \text{ATP}, 35 \$\mu\$moles Na phosphoglycerate, 2.5 mg muscle extract fraction², 7 \$\mu\$moles \text{14C-formate 29,000 counts/\$\mu\$mole. Vol. 2.6 ml, temp. 38° C, time 42 min, gas phase, He. Reaction is stopped in boiling bath 1 min under He, filtered under He, O₂-free NaOH added to 0.1 N and mixture heated under He for 60 min at 100° Analyzed with Leuconostic citrovorum 8081. Each figure represents the average of two separate determinations.

	µg/ml filtrate
CF*activity before alkali treatment	50
CF activity after alkali treatment	285
¹⁴ C formate incorporated, calculated as CF	208

^{*} CF has been isolated from such reaction mixtures by paper chromatography^{3,5}.

When such anaerobically prepared acid filtrates were chromatographed with 1 M formic acid as a solvent, the incorporated radioactivity was found as a pale, blue-fluorescing compound at R_F 0.37, corresponding both in migration and, after elution with acid, in its absorption spectrum^{8,9} to ACF. Since it is known that CF accounts for only a small percentage of the formate incorporated in these experiments, the ACF must be derived from N¹0-CHOFAH4 or a closely related compound. CHOFAH4 is oxidized to the more stable N¹0-CHOFAH2 if oxygen is not excluded. When filtrates of the formylase reaction system are deproteinized by heat without exclusion of air and are subjected to ascending paper chromatography with 0.5 M formic acid and 0.1 M K2HPO4, in each solvent more than 90% of the incorporated ¹⁴C activity is found as a blue-fluorescing spot corresponding exactly with the migration of synthetic N¹0-CHOFAH2 * (R_F 0.37 and 0.58 in the two solvents

^{*} Synthesized by reduction of N¹⁰-CHOFA ¹¹.

respectively). Only small quantities of N¹⁰-CHOFA are present (R_F 0.69 and 0.76 respectively) * . Eluates of the ^{14}C compound, and $N^{10}\text{-CHOFAH}_2$ show the same ultraviolet absorption spectrum. If the product of the formylase reaction were N^{10} -CHOFAH₄, it should be converted to N^5 -CHOFAH₄ (CF) through an internal rearrangement on heating anaerobically in dilute alkali^{8,9}. Table II shows the results of such an experiment.

Within the limits of this type of experiment CHOFAH₄ appears to be completely converted to CI^{**} . Since the microbiological analyses were carried out with l(L)-citrovorum factor L^2 as a standard, the enzymically synthesized N^{10} -CHOFAH₄ must show the l-configuration at carbon atom 6. Some of the CF activity present before alkali treatment is due to the conversion of CHOFAH₄ to CF during heat-deproteinization since $\mathrm{N^{10}\text{-}CHOFAH_{4}}$ undergoes such a transformation under these conditions at the pH of the mixture9. Under the conditions of this experiment (compare with Table I) there was a non-14C source of the one-carbon unit presumably because of the longer reaction time and the diminished activity of the formylase.

Synthetic N¹⁰-CHOFAH₄¹¹ transformylates directly to 5-amino-4-imidazolecarboxamide-5'phosphoriboside just as anhydroleucovorin² does. The latter hydrolyzes rapidly at pH 7 to N¹⁰-CHOFAH₄⁹. Under the conditions of the formylase reaction the rearrangement of CF to N¹⁰-CHOFAH₄^{1,2,3} is much slower than the formation of N¹0-CHOFAH₄. In acetone powder extracts as little as 0.25% of the formate incorporated is accounted for as CF^{***} . Since it has been shown that CI' is converted to N¹0-CHOFAH₄^{2,3,5} by an ATP-dependent reaction¹,² it follows that at least 2 moles of inorganic phosphate should be formed if CF were the first product of the formylation reaction: one for the energy-requiring acylation and one for the N5-N10 conversion.

The experiments outlined here do not preclude the presence of a labile precursor of N¹⁰-CHOFAH₄. It is not suggested that tetrahydrofolic acid as such is the natural carrier, but that it represents a convenient model system. The results strengthen the concept first proposed by Gordon et al. 14 that N¹⁰ derivatives are the active cofactors 5,6. Several laboratories have presented evidence for relatively stable one-carbon cofactors^{2,3,15,16,17}.

Department of Biochemistry School of Medicine Western Reserve University, Cleveland, Ohio (U.S.A.) G. Robert Greenberg \$ LOTHAR JAENICKESS

National Institute of Arthritis and Metabolic Diseases National Institutes of Health, Public Health Service, Bethesda, Maryland (U.S.A.)

MILTON SILVERMAN

```
<sup>1</sup> G. R. Greenberg, J. Am. Chem. Soc., 76 (1954) 1458.
```

² G. R. Greenberg, Federation Proc., 13 (1954) 745.

- ³ L. Jaenicke, Habilitation Thesis, Marburg-Lahn, Germany, June, 1954.
- ⁴ G. R. Greenberg, Federation Proc., 12 (1953) 211.
- ⁵ L. Jaenicke, Biochim. Biophys. Acta, 17 (1955) 588.
- ⁶ H. M. RAUEN, W. STAMM AND K. H. KIMBEL, Z. physiol. Chem., 289 (1952) 80.
 - H. M. RAUEN AND L. JAENICKE, Z. physiol. Chem., 293 (1953) 46.
- ⁷ M. SILVERMAN, J. C. KERESZTESY AND G. J. KOVAL, J. Biol. Chem., 211 (1954) 53.
- ⁸ D. B. Cosulich, B. Roth, J. M. Smith, M. E. Hultquist and R. P. Parker, J. Am. Chem. Soc., 74 (1952) 3252.

 M. May, T. J. Bardos, F. L. Barger, M. Lansford, J. M. Ravel, G. L. Sutherland and W.
- SHIVE, J. Am. Chem. Soc., 73 (1951) 3067.
- ¹⁰ G. GOMORI, J. Lab. Clin. Med., 27 (1942) 955.
- ¹¹ B. L. O'Dell, J. M. Vandenbelt, E. S. Bloom and J. J. Pfiffner, J. Am. Chem. Soc., 69 (1947)
- J. C. KERESZTESY AND M. SILVERMAN, J. Am. Chem. Soc., 73 (1951) 5510.
 C. A. NICHOL, A. H. ANTON AND S. F. ZAKRZEWSKI, Science, 121 (1955) 275.
- ¹⁴ M. GORDON, J. M. RAVEL, R. E. EAKIN AND W. SHIVE, J. Am. Chem. Soc., 70 (1948) 878.
- ¹⁵ P. Berg, J. Biol. Chem., 205 (1953) 145.
- ¹⁶ J. G. Flaks and J. M. Buchanan, J. Am. Chem. Soc., 76 (1954) 2275.
- ¹⁷ B. E. Wright, Biochim. Biophys. Acta, 16 (1955) 165.

Received May 13th, 1955

 $^{^{\}star}$ By careful anaerobic chromatography N 10 -CHOFAH $_{4}$ was demonstrated as the product of this reaction in pig liver extracts^{3,5}.

CF has been isolated from such reaction mixtures by paper chromatography^{3,5}.

^{***} Very recently it has been reported¹³ that in an A-methopterin-resistant strain of S. faecalis folic acid is converted to a labile compound which non-enzymically forms CF and which appears to have properties similar to N¹⁰-CHOFAH₄.

Aided by grants from the National Institutes of Health and the Elisabeth Severance Prentiss Foundation.

^{§§} Fellow of the National Research Council.